| |
| |
| |
| |
| |
|
个人简历
2008年09月–2012年06月,兰州理工大学石油化工威斯尼斯人wns2299cn化学工程与工艺专业学习,获工学学士学位;
2012年09月–2017年06月,华南理工大学威斯尼斯人wns2299cn化学工程专业学习,获工学博士学位
主要研究领域、方向
(1)化工过程系统集成与节能降碳优化;
(2)智能化工系统开发与应用;
(3)主讲本科生课程:化工设计、化工过程模拟等;
(4)硕士生招生专业:化学工程与技术(学术型);化学工程(专业型)。欢迎对工艺设计、流程模拟、系统优化、人工智能以及计算机编程感兴趣的学生报考。
研究成果(代表性成果)
(1)建立煤制乙二醇/烯烃/甲醇/SNG/油/IGCC等工艺多尺度数学模型;
(2)提出基于先进㶲经济分析的多目标优化方法,寻求工业技术-经济-环境总体效益最优方案;
(3)提出多种煤化工提质增效新工艺,实现过程节能减排增效与资源最优配置;
(4)探索不同工艺在生产成本、生命周期成本等层次上的可持续性,为工艺改进提供决策支撑。
目前承担科研项目
主持承担及完成的主要项目:
(1)国家自然科学基金委员会,青年科学基金项目,No. 22108052, 煤与富氢资源联供制乙二醇系统多目标优化集成与能耗消减机制研究,2022-01至2024-12,30万元,在研,主持;
(2)威斯尼斯人wns2299cn,学术新人提升B计划项目,JZ2021HGTB0117,煤与富氢资源联供制乙二醇系统多尺度建模与集成优化,2021-05至2022-12,20万元,已结题,主持;
(3)安徽省自然科学基金委员会,青年科学基金项目,No. 1908085QB69,低碳高效的煤制乙二醇过程开发与多目标优化,2019-07至2021-06,10万元,已结题,主持;
(4)安徽昊源化工集团有限公司,企业横向项目,HY202007-555,合成气经草酸二甲酯加氢合成乙二醇新工艺开发,2020-06至2022-05,12万元,已结题,主持;
(5)威斯尼斯人wns2299cn,学术新人提升A计划项目,JZ2018HGTA0278,煤制乙二醇过程基础模型、过程开发与优化,2018-05至2019-12,5万元,已结题,主持;
(6)威斯尼斯人wns2299cn,人才引进计划项目,407-0371000045,煤/油页岩制油过程全生命周期分析,2017-07至2018-06,4万元,已结题,主持;
(7)国家自然科学基金委员会,面上项目,21676101,油页岩炼制过程油气提质增效技术创新与系统集成,2017-01至2020-12,99万元,已结题,参与;
(8)国家科学技术部,973项目子课题,2014CB744306,热解油气提质技术评价与高效炼制过程集成及多目标优化,2014-01至2018-12,420万元,已结题,骨干参与;
(9)国家自然科学基金委员会,重点项目,21136003,资源/能源化工过程的全生命周期模型、系统分析与优化,2012-01至2016-12,300万元,已结题,骨干参与;
(10)国家科学技术部,973项目子课题,2012CB720504,能量/质量耦合梯级利用的多目标优化综合,2012-01至2016-12,150万元,已结题,骨干参与。
获奖及专利情况
获奖:
安徽省科学技术奖三等奖 1项(2020,排名7/10)
专利:
授权发明专利 4项
[1] 一种集成化学链和二氧化碳利用技术的煤制甲醇系统及方法, 2018-3-19, 中国, ZL201810224796.7.
[2] 一种固体热载体油页岩炼制集成干馏气制氢系统及工艺, 2014-11-17, 中国, ZL201410652443.9.
[3] 一种油页岩干馏气化学链制氢联合发电系统及工艺, 2014-8-29, 中国, ZL201410436632.2.
[4] 一种油页岩炼油集成伴生煤气化制氢综合利用系统及工艺, 2014-6-11, 中国, ZL201410259090.6.
著作论文(代表作)
[1] Conceptual design, techno-economic and environmental evaluation of a coal-based polygeneration process for ethylene glycol and polymethoxy dimethyl ethers production. Journal of Cleaner Production 2021, 298: 126757.
[2] Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation. ACS Sustainable Chemistry & Engineering 2020, 8: 1329-1342.
[3] Optimal design and exergy analysis of biomass-to-ethylene glycol process. Bioresource Technology 2020, 275: 123972.
[4] Technoeconomic and environmental evaluation of oil shale to liquid fuels process in comparison with conventional oil refining process. Journal of Cleaner Production 2020, 255: 120198.
[5] Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production. Journal of Cleaner Production 2020, 273: 123120.
[6] Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes. Energy Conversion and Management 2019, 198: 111814.
[7] Thermodynamic and techno-economic analysis of coal to ethylene glycol process (CtEG) with different coal gasifiers. Energy Conversion and Management 2019, 191: 80-92.
[8] Efficient utilization of CO2 in a coal to ethylene glycol process integrated with dry/steam-mixed reforming: conceptual design and techno-economic analysis. ACS Sustainable Chemistry & Engineering 2019; 7: 3496-3510.
[9] Life cycle comparison of greenhouse gas emissions and water consumption for coal and oil shale to liquid fuels. Resources, Conservation and Recycling 2019; 144: 74-81.
[10] Process simulation, analysis and optimization of a coal to ethylene glycol process. Energy 2018; 155: 521-534.
[11] Composite Metric for Simultaneous Technical and Economic Analysis and Optimization of Energy Conversion Processes. Journal of Cleaner Production 2018; 179: 266-277.
[12] Development of a coke oven gas assisted coal to ethylene glycol process for high techno-economic performance and low emission. Industrial & Engineering Chemistry Research 2018; 57: 7600-7612.
[13] Simulation, exergy analysis and optimization of a shale oil hydrogenation process for clean fuels production. Applied Thermal Engineering 2018; 140: 102-111.
[14] Advanced exergy analysis of an oil shale retorting process. Applied Energy 2016; 165: 405-415.
[15] Framework for Advanced Exergoeconomic Performance Analysis and Optimization of an Oil Shale Retorting Process. Energy 2016; 109: 62-76.
[16] Conceptual design and techno-economic evaluation of efficient oil shale refinery process with oil and gas products upgradation. Energy Conversion and Management 2016; 126: 898-908.
[17] Application of House of Quality in evaluation of low rank coal pyrolysis polygeneration technologies. Energy Conversion and Management 2015; 99: 231-241.
[18] Development of an Oil Shale Retorting Process Integrated with Chemical Looping for Hydrogen Production. Industrial & Engineering Chemistry Research 2015; 54: 6156-6164.
[19] 石油与煤路线制乙二醇过程的技术经济分析. 化工学报 2020; 71(5): 2164-2172.
[20] 集成CO2高效利用的煤制乙二醇过程设计与系统分析. 化工学报 2019; 70(2): 772-779.